A model for active elements in cochlear biomechanics.
نویسندگان
چکیده
A linear, mathematical model of cochlear biomechanics is presented in this paper. In this model, active elements are essential for simulating the high sensitivity and sharp tuning characteristic of the mammalian cochlea. The active elements are intended to represent the motile action of outer hair cells; they are postulated to be mechanical force generators that are powered by electrochemical energy of the cochlear endolymph, controlled by the bending of outer hair cell stereocilia, and bidirectionally coupled to cochlear partition mechanics. The active elements are spatially distributed and function collectively as a cochlear amplifier. Excessive gain in the cochlear amplifier causes spontaneous oscillations and thereby generates spontaneous otoacoustic emissions.
منابع مشابه
Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
It is generally believed that the micromechanics of active cochlear transduction mature later than passive elements among altricial mammals. One consequence of this developmental order is the loss of transduction linearity, because an active, physiologically vulnerable process is superimposed on the passive elements of transduction. A triad of sensory advantage is gained as a consequence of acq...
متن کاملMathematical modeling of cochlear mechanics.
The recent discovery of oto-acoustic emissions [see Zurek, J. Acoust. Soc. Am. 78, 340-344 (1985)] and the newer measures of the micromechanics of the inner ear have generated renewed interest in quantitative descriptions of the biomechanics of the cochlea. Active elements (mechanical force generators) are thought to be essential for producing the high sensitivity and sharp tuning typically ass...
متن کاملAn active cochlear model showing sharp tuning and high sensitivity.
Recent in vivo measurements of cochlear-partition motion indicate very high sensitivity and sharp mechanical tuning similar to the tuning of single cochlear nerve fibers. Our experience with mathematical models of the cochlea leads us to believe that this type of mechanical response requires the presence of active elements in the cochlea. We have developed an active cochlear model which incorpo...
متن کاملA Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns
A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...
متن کاملThe pain of vertebral compression fractures can arise in the posterior elements.
OBJECTIVES To describe and test a model to explain the biomechanical basis for persistent pain after compression fractures of the vertebral body. METHODS The biomechanics model was derived axiomatically from a consideration of the anatomy of vertebral column when affected by compression fractures. Proof of principle was provided by performing controlled diagnostic blocks in six patients. RE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 79 5 شماره
صفحات -
تاریخ انتشار 1986